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Nonlinear dynamics of weak ferromagnetic spin chains 
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Abstract. The nonlinear dynamics of both the isotropic and single ion anisotropic Heisenberg 
ferromagnetic spin chains with Dzialoshinski-Moriya-type weak anisotropic interaction has been 
studied in the classical continuum limit. In both cases integrable weal fenomapetic models 
exhibiting soliton-We elementw spin excitations have been identified. A class of spin wave 
solutions have also been reported in the anisotropic case. 

1. Introduction 

Magnetic systems with different kinds of interactions have acted as important dynamical 
models exhibiting interesting nonlinear phenomena. To be specific, the quasi-one- 
dimensional classical continuum Heisenberg ferromagnetic spin. chains with magnetic 
interactions such as bilinear isotropic exchange, single ion anisotropy due to the crystal 
field effect, inhomogeneity in the exchangc interaction, interaction with an external magnetic 
field, etc, have been identified as integrable models with localized spin excitations such as 
solitons and domain walls under different circumstances l1-51. In addition to the above 
common types of simple but dominant interactions there exist certain interactions which 
are less spoken,of in the literature of nonlinear dynamics of ferromagnets due to the 
mathematical complexity of their representations in the Hamiltonian and in the governing 
dynamical equations. Important among them are the biquadratic exchange interaction 
[6,7] and the weak or Dzialoshinski-Moriya (DM) anisotropic interaction [8].  Recently, 
a specific integrable isotropic biquadratic ferromagnetic spin chain with soliton modes has 
been identified [9]. 

Though the weak or DM interaction in magnets was identified quite some time ago 191, 
the revival of interest in weak ferromagnets has occurred only recently. This is because of 
their important role in insulators, spin glasses and in~the low temperature phase of copper 
oxide superconductors and in phase transition studies ([IO, 111 and references therein). 
Also very recently, attempts have been made to study Heisenberg models of quantum spin 
systems with DM interactions (see, e.g., [12] and references therein). However, so far the 
nonlinear dynamics of weak ferromagnetic spin systems has nof been investigated from the 
integrability and soliton points of view at the classical level. Hence, in the present paper, 
we study at length the nonlinear dynamics of both the isotropic and single ion anisotropic 
one-dimensional spin chains with the weak or DM interaction. After presenting the model 
and deriving the equation of motion in section 2, we investigate the underlying nonlinear 
dynamics of the weak isotropic and anisotropic chains in sections 3 and 4 respectively. 
Conclusions are given in section 5. 
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2. The model and equation of motion 

The Heisenberg Hamiltonian for a ferromagnet involving nearest neighbour spin-spin 
exchange interaction, weak or DM interaction and single ion anisotropic interaction due 
to crystal field effect can be written as [5,8] 
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H = - c [ J S j  * Si+l + D m .  (St A Si+]) - A(S?)']. (2.1) 

In equation (2.1) Si represents the spin angular momentum operator at the lattice site i 
and J(z 0). D and A denote the exchange, DM interaction and anisotropy parameters 
respectively. Here the easy axis of magnetization is chosen along the z-direction and the 
weak anisotropic axis corresponding to DM interaction is chosen parallel to m = (1, 1 ,  1). 
From the Hamiltonian (2.1), it may be observed that in the case of the weak or DM interaction 
a component of the spin at a given lattice site i interacts with the normal components of 
the nearest neighbours, unlike the exchange and crystal field anisotropic interactions. For 
large spin values, one can go to the classical limit, by replacing the spin angular momentum 
operator by a three-component spin vector Si  sf, Sf, S;). Now, the dynamics can be 
represented by the classical equation of motion dS,/dt = [S", H)pg, where the Poisson 
bracket (PB) for two arbifzary functions f and g of spins can be written as [I21 

Here E+ is the Levi-Civita tensor. The lattice (discrete) equation of motion for the 
Hamiltonian (2.1) can now be written as 

SnA[J(Sn+i  + & - I ) -  Dm~(s,+, -sn - l ) -2ASiE]  S ~ = l , Z = ( O , O ,  1). dSn -= 
dt 

(2.3) 

In the long wavelength low temperature limit, we make the continuum approximation for 
the onedimensional chain by introducing the Taylor expansion S,,, = S(x, t)FaaS/ax+ 
+a2azS/ax2 + . . . (where x = nu, a is the lattice parameter) in equation (2.3) and after 
suitable r e s d i g  of time and redefinition of the parameters D and A the resultant equation 
reads 

s, =~s  A Is,, - D ( m  A s,) - 2ASzZ] s2 = 1. (2.4) 

Here the subscripts represent partial derivatives. The form of equation (2.4), namely 
S, = S A F,E, is commonly known as the Landau-Lifshitz (LL) equation, where the 
effective field Fe# = S,, - D ( m  A S,) - 2AS:Z is due to the magnetic interactions given 
in equation (2.1). Having derived the equation of motion the task now lies in solving 
the same to understand the underlying nonlinear dynamics. Experience shows that the 
equation of motion in the LL form is not convenient on many occasions for study of the 
nonlinear excitations. This difficuity is normally overcome by deriving suitable equivalent 
representations. Among them, the differential geometric approach (in other words the space 
curve formalism) for isotropic ferromagnets [13] and the stereographic projection technique 
[ 141 for anisotropic systems are very Useful. Hence, in the following sections we study the 
dynamics of the isotropic and anisotropic systems separately after deriving the equivalent 
representations. 
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3. Dynamics of a weak isotropic ferromagnetic spin chain 

We treat the dynamics of the weak isotropic ferromagnetic spin chain (WIFSC) by considering 
equation (2.4) (with A =.O) after deriving its equivalent representation through the space 
curve formalism [13]. For this purpose we identify the state of the weak ferromagnetic 
spin chain with that of a moving helical space curve in E3.  A local coordinate system 
ei(i = 1,2,3) on the space curve is formed by mapping the spin vector S(x, t) with the 
unit tangent vector q ( x ,  t )  and defining the unit normal vectors e&, t )  and eX(x. t )  in 
the usual way. The change of orientation of the trihedron e; which defines the space curve 
uniquely within rigid motion is determined by the Serret-Frenet equations [15] 

Here K = (elx . elJ1/’ is the curvature and -5 = K-’el . (el, A elxx) is the torsion of 
the space curve. In view of the above identifications, using equation (2.4) with A = 0 the 
evolution of the tangent vector can be written as 

el, = el A [elxx - A e d l .  (3.W 
Then .the evolution of the trihedron ei. i = 1,2,3 preserving their orthogonality is 
determined by equations (3.1) and (3.2a) and is written as 

0 - K T  f DK KX 

-6 - ( K X X / K )  f T z  - Dt 0 (iii) = (Kr-DK 0 
( K ~ ~ / K )  - r2 + D c )  (i) . (3.2b-d) 

While deriving equations (3.2b-6). in the case of weak DM interaction, we considered only 
those contributions during spin evolution that occur due to small angle variation of spins with 
reference to the weak anisotropic axis (parallel to m). The conditions for compatibility of 
the Serret-Frenet equations (3.1) with equations (3.2b-& for the evolution of the trihedron 
given by (ei,)r = (eiJZ, i = 1,2,3 lead to the following evolution equations for the 
curvature and torsion of the space curve. 

Kc -2KxT - Kr;+%K, (3.3a) 
rt = K K ~  + [ ( K ~ ~ / K )  - t2+ ~-51,. (3.3b) 

Equations (3.3) represent the dynamics of the weak isotropic ferromagnetic spin chain 
under the small angle variation mentioned above in an equivalent representation (related 
to the energy and current densities). In order to identify equations (3.3) with more 
standard nonlinear p d a l  differential equations we make the complex transformation [3] 
q = $Ke‘J  rbr and obtain 

(3.4) 
Equation (3.4), after making a Galilean-like transformation, reduces to the well known 
completely integrable nonlinear Schrodinger (NLS) equation, 

(3.5) 

possessing N-soliton solutions [161. From the knowledge of the soliton solutions of 
equation (3.5). the N-soliton solutions for the energy and current densities of the spin 
chain which are related to the curvature and torsion of the space curve can be constructed. 
Also, it is a standard procedure in classical differential geometry that given the curvature 
and torsion, the space curve can be COnStNCted uniquely within rigid motions 1171 and 

iq, + q,, + 21ql’q - iDq, = 0. 

iqt + qxx + 2tq1’q = o 
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hence the spins. For example, the final form of the one-soliton solution for the spin vector 
(S = (Sx, SY, 6)) can be written as [IS] 
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S” = v s e c h V [ ~ o t a n h V s i n ~ - ~ ~ c o s x l  
SY = -U sech Y [qo tanh Y cos x + #o sin x] 
SL = 1 - U I ] O  sech2 V. 

(3.6~) 
(3.6b) 
( 3 . 6 ~ )  

where 

Here 11 and # are associated with the eigenvalue of the problem and 00 is a constant. So, 
we conclude that the wSC becomes integrable and the elementary spin excitations are 
governed by solitons when we consider the effective field contribution due to weak (DM) 
interaction lies only within a small angle cone whose axis lies parallel to m. 

4. Dynamics of a weak anisotropic ferromagnetic spin chain 

Having analysed the dynamics of a W S C  we now try to investigate that of an 
anisotropic chain (WAFSC) by considering equation (2.4) under stereographic projection. 
We stereographically project the unit sphere of spins onto a complex plane by defining [14] 

(4.1) 
Sx + iSY 
1 + SZ 

o = OR +iwr = 

OR, U,; real. Using equation (4.1) and their derivatives in the component equations of (2.4), 
after lengthy calculations we obtain 
(1 + WW*)(iOt + O x x )  - 2O*Oz + 2A(1 - W W * ) O  - iD{2(OR + 01) 4- (1 - W W * ) O x ]  = 0. 

(4.2) 
The dynamics of the spin chain can be understood by solving the above equation. 

4.1. Search for integrable models 

Before actually solving equation (4.2), in order to see whether it is integrable in general and, 
if not, for any specific parametric choices of A and D ,  we cany out the PainlevC singularity 
structure analysis following the algorithmic procedure of Ablowitz et a1 [19], originally 
developed for ordinary differential equations and later on extended to partial differential 
equations by Weiss et a1 [ZO]. This method has been found to be successful in identifying a 
number of integrable ferromagnetic models 19,211. For this, we rewrite equation (4.2) and 
its complex conjugate equation by replacing OJ and O* by F and H respectively and obtain 
(1 + FH)(iF, + pZx) - Z H F ~  + z A ( ~  - F H ) F  

(4.3a) 
(1 + FH)(-iH, + HxJ -2FH: + ZA(1- F H ) H  

(4.3b) 
In order to understand the singularity structure of the solutions to equations (4.3). we 

(4.44 

H = H ~ ( x ,  t ) ~ ( x ,  t )  + H ~ ( x ,  r)Cq+j(x,  t )  H~ # o (4.4b) 

-iD{(F + H) - i(F - H) + (1 - F H ) ] F ,  = 0 

+iD{(F + H) - i(F -~ H) + (1 - F H ) } H x  = 0. 

assume the solution in the form of  a Laurent series given by 
F = Fo(x, t ) C P ( ~ ,  t).+ X$(X, t )CP”(x,  t )  Fo # 0 

j=1 

j = I  
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where @ ( x ,  t) is a non-characteristic singular manifold. In order to reduce the complexity 
of calculations we follow Kruskal's ansatz (see, for example, [21]) by assuming @ ( x ,  t )  = 
x + @ ( t )  ( @ ( t ) :  arbitrary) in which case Fo. HO and 5, Hj are functions o f t  alone. Using 
the leading order of solutions (4.4) (F-Fo@P, H-Ho@q) in equations (4.3) and balancing the 
dominant terms, we solve for p .  q and Fo, HO and obtain three different cases of solutions. 
Then we substitute the generalized Laurent expansions F = FoqV + . . . + + . . . and 
H = Ho@ + . . . + p@y+' + . . . (or, @ arbitrary), in equations (4.3) containing dominant 
terms alone and find the resonance values (r)  for all three cases of solutions obtained. The 
results are as follows 

Case@: p = - l , q = - I  r = O , O , - 1 , - 1  
Case (ii): p = -1, q = 0 r = 0.0, -1,1 
Case (iii):p = 0, q = -1 r =O,O,-1,-1. 

( 4 . 5 ~ )  
(4.56) 
(4.5c) 

To all three cases FO and HO are found to be arbitrary, which is in agreement with the 
resonance values r = 0,O. The resonance r = -1 represents the arbitrariness of the 
singular manifold. Upon verification we further find that, in cases (i) and (iii), Fl (or HI) 
is arbitrary in accordance with the resonance value I = 1. 

There is one more possibility, with the leading powers p = 0, q = 0, which corresponds 
to the Taylor expansion of the regular solutions [21]. 

( 4 . 6 ~ )  
(4.6b) 

We calculate the coefficients Fo, F1, . . . and their conjugates Ho, HI, . . . by substituting 
equations (4.6) into (4.3) and collecting the coefficients of different powers of @. As there 
is no possibility of branching unless the coefficients of the highest derivative vanish, we 
assume in the coefficients of @O 

( 4 . 7 ~ )  (1 + FoHo) = 0 
and hence obtain 

-HoF: + 2AFo - iDF1 - (iDFl/2)[(Fo + Ho) - i(F0 - Ho)] = 0 (4.7b) 

and its conjugate equation. Equation (4 .74 indicates that either FO or HO is arbitrary. 
Collecting the coefficients of @ and on using equations (4.7) we obtain 

and its conjugate equation for Hz. Finally, collecting the coefficients of @' and on using 
equations (4.7)-(4.8) we find that the coefficients F3 and H3 vanish identically indicating 
that F3 and H3 are arbitrary, leaving the resonance condition which is satisfied identically 
only when D = 0. The above analysis shows that equation (4.2) possesses the Painlev6 
property and is expected to be integrable only when D = 0. Otherwise it indicates the 
presence of movable  critical^ manifolds involving logarithmic type branches. 

4.2. Soliton excitations 

After finding that the anisotropic weak ferromagnet is not expected to be integrable in 
general, the natural question arises as to whether there exists any approximate integrable 
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model of the weak anisotropic ferromagnet whose elementary spin excitations can be 
expressed in terms of solitons. We choose the direction of the weak anisotropic axis due to 
DM interaction parallel to the easy axis of magnetization (i.e. m = 1 = (0, 0, l) ,  z-direction) 
and hence the LL equation (2.4) can be rewritten as 
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st = S A [srx - D(l AS,) - 2AS21] Sz = 1. (4.9) 

Now, we define 

U = Sx fiSY (4.10) 

and in view of the constraint S2 = 1, we then have 

(S32 = 1 - [U12 (4.11) 

which for small deviations of the spin S from the equilibrium direction that lies parallel to 
the easy axis of magnetization (anisotropy axis) and also to the weak anisotropic axis, can 
be written as 

(4.12) 

Using equations (4.10) and (4.12) in the component equations of (4.9) and under the long 
wavelength approximation [ l ]  by keeping only nonlinear terms of magnitude IuIzu, we 
obtain 

sz = 1 -+I.[ 2 . 

iu, - uxx + AlulZu - 2Au - iDu, = 0. (4.13) 

Upon making a Galilean-type transformation and transforming U as U -+ (2/A)1/2~e-2iA', 
equation (4.13) reduces to the integrable NLS equation 

iu, - uxI + 2lulZu = 0. (4.14) 

The NLS equations (3.5) and (4.14) are also familiar in nonlinear optics [ZZ]. It may be noted 
that, in optical terms, while equation (3.5) possess bright soliton solutions, equation (4.14) 
admits dark solitons., This is because of the change of sign of the dispersive term uxx of 
both the equations. Knowing the N-soliton solutions for U, the corresponding solitons for 
the spin vectors can straight away be constructed using equations (4.10) and (4.11). For 
instance, the one soliton solution for the spin vectors can be written as [23] 

S" +isY = fal[(1 fgL) - (1 -gl) tanh(~h)lexp(i~,)  (4.15a) 

where 

51 kix - Q i t  +ti (') <1 = Ilx - (AI - I:)t + <?) 
gi =(-l/L$)[k:-i(Qi +U1k1)l2 1o11I2= (Bi/4k:) 6'1 = k f + ( Q 1 + 2 l i k i ) ~  
h = constant. (4.15b) 

Thus we find that in weak anisotropic ferromagnets when the weak anisotropic axis lies 
parallel to the easy axis of magnetization under the long wavelength approximation and for 
small angle deviation of the spins the dynamics is found to be governed by the completely 
integrable NLS equation and the elementary spin excitations by solitons. 
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4.3. A class of spin waves 

Having identified an approximate integrable model of the weak anisotropic ferromagnet 
whose elementary excitations are governed by solitons, we now try to investigate the nature 
of spin waves in the more general case. For this, we rewrite equation (4.9) in terms of the 
stereographic variable using equation (4.1). The resultant equation takes the form 

(1 + I L I O * ) ( ~ W ~ + ~ ~ ~ ) - ~ W * W ~ + ( I  -oo*)(ZAw-iDw,) =O.  (4.16) 

An obvious but interesting class of time-dependent solution to equation (4.16) is the plane 
wave solution 

w = B expi[Qf - kx + fi] (4.17) 

with the dispersion relation 

Q( l+  B2)+(k2- Dk+2A)(1- B2)=0.  (4.18) 

Here B and k are the amplitude and phase of the wave respectively. Using equation (4.17) 
in (4.1), the spin components can be written as 

2B 
cos(S2t - kx + k )  

sx = (1 + B2) (4.19~) 

(4.19b) 

(4.19~) 

It may be noted that the spin wave oscillations (4.19) are confined to the Sx-SY plane with 
constant energy density E = ik2B2. 

More general spin wave solutions can be obtained by rewriting equation (4.16) in terms 
of the wave variable t = S2t - kx. After making the transformation 

equation (4.16) can be rewritten as a set of coupled equations: 

4k2a2bat Dk(1 - a2) 
(1 +a2) (I +a*) a' 

+ -nuf = k2[2a(.b + abl] - ("a) 

(4.21b) 
2k2a (1 -a2)  

(1 +n2) ' (1 + a2) 
Rub = k2(acf - ab') - - (a - a b ) + -  (2Aa - Dkab). 

Equation (4.21~) can be integrated to give 

(4.22) 

where E ]  is the integration constant. Making use of equation (4.22) in equation (4.21b) and 
integrating once, we get 

n 
a: = (1 + a2I2( [EZ + (E: + a ( C 2  4k + 481 k')) f + &:a2] 

(4.23) 
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where EZ is the second integration constant. Choosing E ,  = EZ = 0, equation (4.23) when 
3D2 = 8 A  can be rewritten as 
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(4.24) 

On integrating equation (4.24), we obtain 

a' = h ( ~ 3  exp(d<) - 1) (4.25) 

where h = 1/(1 - D ) ,  8 = (52 - 2Dk2)/k2 and ~3 is the new integration constant. From 
equation (4.22) (with = 0) we can write 

(4.26) 

Knowing a and b, w can be computed using equation (4.20). Finally, using equation (4.1) 
the spin components can be constructed as 

(4.27a) 

(4.27b) 

where 

0 = ~4 + $ [ (Z - A - g) C - In[exp(<)(~3 exp(d<) - 1)"/'] (4.27~) 1 
and 84 is a constant of integration. 

5. Conclusions 

In this paper, we have discussed in detail the nonlinear spin dynamics of both isotropic and 
anisotropic classical one-dimensional continuum Heisenberg ferromagnetic spin chains with 
the Dzialoshinski-Moriya weak interaction. After constructing the Landau-Lifshitz equation 
to represent the spin dynamics we analysed both isotropic and anisotropic weak ferromagnets 
under the space curve and stereographic representations respectively. The weak isotropic 
system is found to be integrable and the elementary spin excitations governed by solitons, 
when the effective field due to weak interaction is considered within a small angle (between 
s and m) cone. A Painlevt singularity structure analysis of the weak anisotropic system 
showed that the system is, in general, not expected to be integrable. However, under the 
long wavelength approximation and for small angle variation of spins, the anisotropic system 
when the weak anisotropic axis lies parallel to the easy axis of magnetization was found 
to be integrable and the elementary spin excitations governed by solitons. We have also 
reported a class of spin wave solutions to represent the dynamics of the weak anisotropic 
ferromagnets in the more general case. The arbitrary general cas; which is not integrable 
will be taken up separately in the future for the possible study of chaotic behaviour and 
will be reported elsewhere. 
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